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DYNAMIC ANALYSIS OF ELASTIC~PLASTICBEAMS
BY MEANS OF THERMOELASTIC SOLUTIONSt

F. ZIEGLER and H. IRSCHIK
Technical University. Vienna. Austria. A-I040

Abstrad-The equation of bending motion of the inelastic beam is put into a linear form by
interpreting the nonlinear part of the operator as a fictitious temperature-moment loading. thus
consistently considering the inhomogeneous chul"'dcter of the dynamic boundary conditions.
The total solution is separated into two parts: a quasistatic deflection due to external loadings
and fictitious temperature moments and a dynamic part of the deflection due to inertial forces
and homogeneous boundary conditions. The numerical procedure is of an iterative and time
step type and is equivalent to the Newton-Raphson method in matrix formulation.

I. INTRODUCTION

Well-known procedures make use of an incremental formulation, thereby altering the
stiffness of the structure which is considered elastic in each incremental step. In prac
tice, there is a need for keeping the stiffness matrix constant during the computation
of the elastic-plastic response.

Following an idea of Timoshenko and Goodierll]. who considered thermoelastic
disturbances equivalent to distributed body-forces and surface tractions acting on an
isothermal elastic body, which was extended to elastic-plastic behavior with respect
to a fictitious loading of the purely elastic body in l2J. an alternative procedure is
presented and applied to a beam under various thermal and isothermal transient load
ings. Similarly, inelastic plates and shells may be considered. The equation of bending
motion of the inelastic beam is put into a linear form by interpreting the plastic part
of the operator as a fictitious temperature-moment load. thus consistently considering
the inhomogeneous character of the dynamic boundary conditions. and leaving the
kinematical boundary conditions unaltered. Next we separate the total solution into
two parts: (I) The quasistatic deflection due to external loadings and fictitious tem
perature moments. Computation is made by standard linear elastic analysis. e.g. using
Greens' function and Maysels' formula of thermoelasticity. These solutions eventually
take care of inhomogeneous dynamic boundary conditions: (2) The dynamic part of the
deflection due to inertial loadings and homogeneous boundary conditions. In that part,
we apply Galerkin's procedure, using elastic eigenfunctions for the Ritz-Ansatz. ren
dering an uncoupled set of one-degree-of-freedom linear elastic oscillators in forced
vibrations. The forcing functions have to be calculated using the quasistatic solution.
The numerical procedure is of an iterative and time-step type which is adjusted to the
above formulation. The first step of calculation considers external loadings only. thus
rendering the elastic solution for all times.

In a second step. time is discretized and the fictitious temperature moment is
calculated from total strain assuming a proper elastic-plastic materials law. The pro~

cedure is equivalent to the Newton-Raphson method. In the course of the calculations.
the elastic part of the solution is unaltered and the given loadings do not enter the
iterative procedure. Because only linear operators with constant coefficients determine
the formulation. it is believed that the method will be of interest in the course of
nonlinear engineering dynamics of elastic-plastic bodies. In addition. due to the modal
analysis no solutions of systems of equations are required.

t The authors expressively dedicate this paper in memoriam to Professor Alicia Golebiewska Herrmann.
late Associate Editor of the In/ernational Journal of Solids and StruC/lIrl.'s.
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2. BASIC EQUATIONS

The equation of motion of a beam is

M •.u = -q + pAli·'. (2.1 )

In simple Bernoulli-Euler theory, where rotational inertia is neglected and where linear
distribution of strain is assumed in the form e = - ZII' '-'.I' the constitutive equation may
be reduced to

K = -11'.<'<' (2.2)

The external distributed loading is denoted q(x, t) and

(2.3)

represents an external temperature loading O(x. z. t), which is considered in (3) and
omitted in this study. A is the cross-sectional area of the beam, J is moment of inertia.
E denotes the initial Young's modulus, 11' is the deflection and M is the bending moment.
Equation (2.2) follows from the nonlinear stress-strain relationship

(J' = E(e - elNI
- nO)

which, when integrated, renders

(2.4)

(2.5)

This expression is analogous to eqn (2.3), noting that a nonlinear temperature distri
bution, nO, corresponds to the nonlinear strain elN}. Elimination of M leads to the
integro-differential-equation, we assume constant initial bending stiffness,

(2.6)

The set of boundary conditions to eqn (2.6) consists of two kinematical conditions,

KBC: w = 0,

and the inhomogeneous dynamical conditions,

w,x = 0 (2.7)

DBC: - K + m = 0, (M = 0): - K.x + m,.. = 0, (Q = M u = 0). (2.8)

Note the analogy to linear thermal bending problems[4, p. 220]. which renders
the same type of inhomogeneous DBC. Similarly, the dynamical conditions ofcontinuity
of nonlinear deflection in the case of a single force load and in the case of a singular
external moment loading are in full analogy to a linear beam with temperature loading.
Hence, we apply the methods of solution of linear thermal-shock problems, see e.g.
[5, p. 108] and [6], to solve the nonlinear isothermal vibration problem.

3. SOLUTION IN ANALOGY TO LINEAR THERMAL SHOCK LOADING

The key step in the solution procedure is the splitting of the deflection 11' in two
parts, a quasistatic deformation W S with inhomogeneous boundary conditions (2.8) and
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a dynamic deflection wIJ applying homogeneous DBC:

EJ( - KS,u + mHo') :::: q.
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0.1)

KBC: w~ = 0,

DBC: K
S = 111, S

K H :::: In ...

(3.2)

KBC: wIJ = 0.

DBC: K
IJ == 0,

(3.3)

Both parts of the solution are expressed by the linear elastic deflection, 11'*, super
imposed by the nonlinear deformation, w**.

3.1 Quasistatic deflection
Putting m == 0 in eqn (3.2) and solving the linear elastostatic equations by any

convenient standard procedure renders w*s at any instant of time. Assuming the fic
titious "thermal" loading m of the linear beam to be known, the remaining nonlinear
deformation wUs can be calculated by powerful methods of solution of linear ther
moelasticity (e.g. by Mohr's analogy or Maysel's formula, etc.), and

(3.4)

The simple case of a hinged-hinged beam of span 1 under constant loading q, will
be considered here as an example:

and, because the support is statically determinate, M**s == 0, and hence integrating
eqn (2.2) by Mohr's analogy renders

(3.6)

3.2 Dynamic deflection
Inserting lI'**s == 0 and solving eqn (3.3) renders the linear part W*D of the dynamic

deflection. Homogeneous b.c. allow for the application of the classical Ritz-Galerkin
procedure,

N

W*D ~ qi(t)'Pi(~)'
i= I

~ = x/I. (3.7)

When 'PI{~) are the orthogonal eigenfunctions of the linear beam with homogeneous
DBC, 'Pi E Wi(~), the time functions q;(t) are determined by the uncoupled solutions
of n oscillator equations:

..* + 2 * F*qi Wiqi = i, i = I ... N, (3.8)

when Wi are the eigenfrequencies of the linear elastic beam with homogeneous DBC
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and without plastic deformations and the generalized force is given through the integral

For the hinged-hinged beam:

Ini = pAl (I Wr d~.Jo (3.9)

and

(3.10)

k = 2n - l, n = 1,2.3 ... , (3.1.1)

if the loading is assumed independent of x in the form

q = qo + ql sin vt. t 2: O. (3.12)

The dynamic deflection W**D to be superimposed on the linear part is decomposed
analogous to eqn (3.7) and the time-functions q:* are the solutions of the oscillator
equations. 'Pi = Wi,

i = I ... N, (3.13)

with new forcing functions Fi* depending on the nonlinear quasi static deflection
w**s.

(3.14)

Equation (3.7). in more general cases, can be replaced by the FEM-approximation
and the sets of eqns (3.8). (3.13), respectively. may become coupled. because the stiff
ness matrix is, in general, nondiagonaJ. With N - :x; the solutions given so far become
exact. Approximation enters only by evaluating the nonlinear "temperature" loading
for a nonlinear stress-strain or. in this study, nonlinear bending moment-curvature
relation in discrete points of the beam only.

The solution to eqns (3.8), (3.13) in time-domain is by convolution. it can be con
veniently given in frequency domain first and afterwards transformed to time domain
by

1
* ** I JX H (-)C* **(-) ;wl d-

q~ . = -2 k w ~ . w e w,
1T -x

where, cf.[7J,

and

can be evaluated by the Fast Fourier Transform (FFT).

(3.15)

(3.16)

(3.17)

3.3 Assumptions 011 the nonlinear loading 111(x , t)
We assume an external loading q(x, t) which separates in space-time variables.



Hence. considering PI incremental time-steps within observation time I,

1',

m(x, 1) ~ Amkr)..f(t - jAt)o
.1=1

Conveniently.

(3.18)

f(t - j At) = H(t - j At) or f(t - j At) = [r(t - Ij_ d - r(t - li)]/A/, (3.19)

where H(t) is the Heaviside step function and r(t) is a linear ramp function.
We use a hinged-hinged beam in quasistatic and pure bending motion for illustra

tion:

(3.20)

Assuming the state of the nonlinear beam known at time I", the linear part of the solution
changes at I" + I by the amount

(3.21 )

In this case, AIni = const. over the span of the beam. Note the interpretation of
nonlinear strains as fictitious loadings as proposed in [2] fails without additional con
siderations of b.c. In the present formulation. however. material nonlinearity renders
simply

Hence. dropping S

**sKI'+ I

(' + I

~ Ami'
i= I

(3.22)

(3.23)

is a nonlinear equation for the curvature increment AK/1+ I, since Am(AK) may be taken
from the generalized constitutive law M(K). see Fig. I. cf. eqn (2.2).

Equation (3.23) is accompanied by the constraint (unloading),

Aml'+ I = 0,

whenever M(K) is in the linear paths of Fig. I. An iterative solution in the form

(3.24)

(3.25)

Fig. I. M - K constilUtive relation of ideal elastic-plastic material for a beam with symmetric
cross-section. Definition of fictitious temperature moment increment j.",.
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with a start value of ~m(~KIO) == O-the time indicating index has been dropped-is
exactly the modified Newton-Raphson method, [8, p. 291], [9, p. 454]: The roots of
the equation

are iteratively determined from

y(x) == f(x) + c == 0 (3.26)

0.27)

In the above case we identify x == ~K, f == ~m - ~K, (' == ~K* and put f'(XIOI )

== - I. Convergence of the iteration is assured in the neighbourhood of the root. The
speed of convergence is determined by the time interval ~t, i.e. by the value of the
linear elastic curvature increment ~ K*. Close to points with horizontal tangents in the
M(K) graph, an updated version of the Newton-Raphson method gives an accelerated
convergence: f' is chosen at the point of decelerating convergence and then kept
constant:

4. ITERATIVE SOLUTION OF THE NONLINEAR EQUATIONS

In the case of dynamic loading q(x, t) we set ~mix) of eqn (3.18) constant in each
of the intervals ~Xk, k == 1 ... PI of the span, I == PI ~x:

("

~m({x) == L ~m.ik[H(x - Xj- d - H(x - Xi)]'
k=1

Hence, from eqn (2.2), with M**s == 0 in statically determinate beams, Fig. 2,

(4.1 )

(4.2)

in the kth interval, and zero otherwise. Using ramp functions in eqn (3.18) and the
eigenfunctions of the hinged-hinged beam in eqn (3.14), the dynamic forcing functions
become

(4.3)

where

** 2pA/~~i;k..
f;k == - ')' SIn 11T~k, I == 1,3,5, ... , and zero otherwise. (4.4)

(111' -In;

Above, the deflection ~ W~*S of Fig. 2 has been used.

6w -$
Jk

Fig. 2. Example beam of span I and loading qt t). Quasistatic deflection increment due to loading
~/Ill,.j = P + I in Fig. I.
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The solution of eqn (3.13) becomes simply

825

f**
qZ:(t) =~ [H(I - Ij-I) sin w,{1 - Ij_ Jl - H(I - IJl sin w,{1 - Ij)] dmj/,. (4.5)

widl

Superposition of the static curvature, eqn (3.22), and of the dynamic part renders

** A A **0d Kpr = LJ"npr + l.l Kpr ,

where

A **0 = A **01 + A **0"l.l Kpr l.l Kpr l.l Kpr ,

and using the incremental form of eqns (3.7) and (2.2),

is the curvature increment due to the dm's already calculated, and

contains the unknown spanwise distributed dmp " to be evaluated at time I

pd/. For a numerical evaluation of eqn (4.8) see Appendix A.
Further superposition renders

* **dKpr = dKpr + dKpr ,

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

which is the nonlinear system of equations for the PI increments of curvature d Kpr with
r = 1 ... PI, due to dmpr • Equation (4.10) is the matrix equivalent to eqn (3.23)
discussed before:

where

and

A = A * A **01 G** Al.l Kp l.l Kp + l.l Kp + p l.l mp ,

dKp = [dKpl dKpr .•• dKpplV,

dK: = ldK;1 dK;r .•• dK;p,V,

= [A **01 A **01 A ** OI]T
l.l Kpl ••• l.l K pr ••• l.l KpPI ,

(4.11)

(4.12)

(4.13)

(4.14)

have the elements

G**p
**gprr +

** )gpipi

gPPIPI + 1
(4.15)

r = 1 ... PI, k = 1 ... PI. (4.16)

A modified Newton-Raphson procedure can be applied and we iterate
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~Kg) = ~Kr; + ~K;*[)I + G;* Amp (AKg- li ) (4.17)

with start vector Am,,(AK(())) = 0 and the components of Am" being zero for linear
parts of the M(K) constitutive law. A more general procedure is outlined in Appendix
B. Updating renders

where

Convergence properties are same as in the scalar case,[9].
Beams with statically indeterminate b.c., hence, with nonvanishing bending mo

ment M**s, have nonvanishing static curvature increments also for noncoinciding span
elements, and G;* contains additional terms.

2.5
wll/2,tl
wJ~11

Elastic-plastic
;...... \ b~am ,

/,.., 'I
I \ \ q.-.SqL /1

/ ~1-.12Sq~/t
/ Elastic,)., \~~ I

'I b~am -' /
~ \ It/~t

8 100
\ /............

b )

0.5

t.S

1.0

2.0

1.5

o
Fig. )(a. b. c/. Dimensionless midspan deflection versus dimensionless time. ~1 ... increment.
Wid.,,,, = 5,/,.I4/3S4I:.:J.
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5. NUMERICAL RESULTS

For comparison's sake, cf.[2], we consider a hinged-hinged beam with rectangular
cross-section B x H, HIB = 2, and liB = 30. Material properties are ElcrF = 600, where
crf" is the yield stress of an ideal elastic-plastic material and YEJlpAl4 = 129.78[s-'].
The M - K constitutive relation for that case is given in Fig. I. and the nonlinear
loading path becomes

(5.1 )

where KF = MFIEJ.
First. we consider a step lateral load qo with 0.5qL' 0.625qL' and 0.75qL. respec

tively. where qL = 12MF I[2 is the static collapse load which causes a plastic hinge at
the midspan of the beam. Secondly. a sinusoidal load is superposed where ql = .125qL
is the amplitude and v = 2w ,/3 and WI are the values of the forcing frequency to be
considered. The "resonant" case v = WI requires a reformulation of eqn (3.11) to

(5.2)

since no viscous damping is considered here.
Results are cast into graphical form in Fig. 3 with the observation time 100 x tJ. t.

Time-increments are same as those of [2], tJ. t = 2Trn2w I = 0.681 x 10- 4[S] for com
parison's sake. also. spanwise. the number of intervals is chosen to be 15. likewise to
[2], where only step-loading was considered. In contrast to [2], no discretization within
the cross-section is used. However. the influ'ence of the shearing force is neglected.

For higher loadings, the decrease ofdeflections in Fig. 3 is about 30% less compared
to [2] for qo = 0.625qL and is absent for qo = 0.75qL. where repeated plastification
during unloading occurs.

6. CONCLUSION

Interpretation of the nonlinar elasto-plastic problem in analogy to linear thermo
elasticity renders an efficient algorithm which. for a realistic M - K constitutive relation,
is unconditionally stable and may be interpreted as a modified Newton-Raphson
method. Test calculations showed insensitivity to the choice of the value of tJ. t. Re
duction of mesh size within the span does not considerably increase computer costs.

Al'knoll'led/?ement-The authors acknowledge the supply of computer time at the CYBER I72D of the In
teruniversitares Rechenzentrum in Vienna. and are grdtefulto Dr. F. Hollinger for help in the development
of the FORTRAN computer program. Part of the study was presented by F. Ziegler at EUROMECH Col
loquium 174 "Inelastic Structures Under Variable Loads." chairmen C. Polizzotto and A. Sawczuk. Palermo.
Italy, 1983.
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APPENDIX A

Equation (4.8) determines the curvature increment in the pth time interval due to the previously calculated
6m·s. This form, however. has to be updated in order to keep the computational effort equally low for all
p. Hence, summation over j should be avoided, which is enabled by the algorithm given below.

Consider thejth time interval. That part of the ith generalized coordinate. which is due to Am" may be
written as (see eqn (4.5)),

(A.I)

(Note that q~* = 0, I < Ij_ d. The remaining part of qj'* conveniently may be calculated from the initial
values at the time Ij_l. Evaluating qj'* at the time nodesj, a storage algorithm is thus rendered:

(A.2)

Furthermore,

Note that qZ* in eqn (A.3) has to be evaluated at Ii + O.
Inserting (A.2) and (A.3) into eqn (4.8) gives the desired form of proper incrementation:

" [ ** qj'*(I,,- d . ] (iTl)~6K;:/J· = ~ q; (I,. -I) cos Ill; AI + . sm Ill; 61 T W,{~r).
;_1 w,

APPENDIX B

(A.3)

(A.4)

The formulation developed so far makes use of moment-curvature relations, which seems to be a straight
forward strategy as long as the cross-section of the beam is symmetric and the proper M(K)-diagram may be
conveniently derived, see e.g. eqn (5.1). or taken from the literature directly.

In case of (plane bending 00 beams with non-symmetrical cross-sections. however. the neutral axis
changes. if yielding takes place. see e.g. (10). Furthermore. use of more complicated cross-sectional areas
shows the need of numerical procedures, which are free from analytical M(K)-relations. Such a method may
easily be implemented and adopted for the solution of the nonlinear system of equations (4.11), which is
shown below.

The cross-sectional area is discretized into PA stripes of area AA." s = I, ... , PA. where A =
L~~ I 6A•. The increment of strain in the stripe of number s is found from the linear distribution

(B.I)

where t lO
) = t(z = 0) and z is measured from the cross section's center of gravity. Equilibrium requires

N = La dA = EA(tlOl
- n) = O.

where

denotes the fictitious mean temperature of the beam. Hence, AtlOl = An and

At"r., = Z., AKpr + Anpr •

(B.2)

(8.3)

(B.4)

For the iterative solution of eqn (4.11), a first approximation is calculated using Am~n = 0 as a start
vector:

(8.5)

Inserting the components of (B.5) into (B.4) renders the first approximation of the strains At:.~',. where
An::'; = 0 is applied consequently.

In ideal elastic plastic materials there is Atlfr.! = At"r., in yielding parts of cross-section. and zero
otherwise. Thus. a first approximation for the fictitious temperature loading may be calculated:

(B.6)
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I
A/llil = - L At,N.11 AA

I'r A., pn .~.
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(8.7)

Using eqn (B.6), a second approximation AK);' is calculated from (4.11); accordingly, I1t:~). is derived from
(B.4), where AnW from (B.7) is used. This. in turn. results in second approximations Am:.~/. I1n~~1 and so
on, until the iteration is stopped by numerically limiting the changes.


